$$\frac{Group Theory}{5t^{4} class}$$

$$\frac{Z_{n}: T_{k} integers modulo n}{Z_{n} = \left\{ [0], [1], \dots, [n-1] \right\} | Z_{n}| = n}$$

$$\left(Z_{n}, +, * \right) is a ring (in that, a commitative) ring, * (Z_{n}, +, *) is a group (in that, a commitative) ring, * (Z_{n}, +, 0) is a group (in that, commitative) ring, * (Z_{n}, +, 0) is a group (in that, commitative) ring, * (Z_{n}, -, 1) is a commitative starm.
$$\frac{Z_{n}: T_{k} integers modulo n}{(Z_{n}, +, 0) is a group (in that, commitative) ring, * (Z_{n}, -, 1) is a commitative group starm of the starm.
$$\frac{Z_{n}: T_{k} integers modulo n}{(Z_{n}, -, 1) is a (commitative) group starp starm about the elements in Z_{n} = \left\{ 2Z_{n} \right\} = \left\{ 2C_{n} \right\}$$$$$$

Primak In any comm. Any (Such is Zi)
[a muit
$$\Rightarrow$$
 a mit a zero-divisor
reason: Suppose. It is a let a const
Then: $a b c = (ab) c = 1 c = c$ (a nort)
Then: $a b c = (ab) c = 1 c = c$ (b) $\Rightarrow c = 0$
Lac ($= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
Lac ($= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b \cdot 0 = 0$) $\Rightarrow c = 0$
 $= b(ac) = b(ac) = b(ac) = b(ac) = b(ac) = b(ac)$
 $= b(ac) = b(ac) = b(ac) = b(ac) = b(ac) = b(ac)$
 $= b(ac) = b(ac) = b(ac) = b(ac) = b(ac) = b(ac)$
 $= b(ac) = b(ac) = b(ac) = b(ac) = b(ac) = b(ac)$
 $= b(ac) = b(ac) = b(ac) = b(ac) = b(ac) = b(ac)$
 $= b(ac) = b(ac) =$

• a
$$\varepsilon$$
 H take $b = a \varepsilon a = \varepsilon i \otimes a^{-1} \varepsilon H \Rightarrow a^{-1} \varepsilon H$
• $a, b \in H$ $\overline{take} = b^{-1} = a(b^{-1})^{-1} \varepsilon H \Rightarrow a b \in H$
 $i \otimes a^{-1} = b^{-1} = a(b^{-1})^{-1} \varepsilon H \Rightarrow a b \in H$

Let
$$(6, \cdot)$$
 be a group (with $f=\cdot$)
For $a\in 6$, write $a^2 = a \cdot a$
 $a^3 = a \cdot a \cdot a = a^2 \cdot a$
 $a^3 = a \cdot a \cdot a = a^2 \cdot a^2$
 $also a^{-2} = a^{-2} \cdot a^{-2} = (a^2)^{-1}$ ($a \cdot a^2 \cdot (a^{-2}) =$
 $also a^{-2} = a^{-2} \cdot a^{-2} = (a^2)^{-1}$ ($a \cdot a \cdot (a^2 \cdot (a^{-2})) =$
 $a \cdot (aa^2) a^{-2} = 1$
in general, we write (for $n \in \mathbb{Z}$)
 $a \cdot (aa^2) a^{-2} = 1$
 $a \cdot$

Def 6 is a cyclic group
$$4$$
 6 = < q> for
some a ϵ 6. (a is celled a generator
 $f(q)$
 $f($